Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sports Med ; 44(9): 650-656, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36577438

RESUMO

Cardiorespiratory fitness measured as ˙VO2max is considered an important variable in the risk prediction of cardiovascular disease and all-cause mortality. Non-exercise ˙VO2max prediction models are applicable, but lack accuracy. Here a model for the prediction of ˙VO2max using seismocardiography (SCG) was investigated. 97 healthy participants (18-65 yrs., 51 females) underwent measurement of SCG at rest in the supine position combined with demographic data to predict ˙VO2max before performing a graded exercise test (GET) on a cycle ergometer for determination of ˙VO2max using pulmonary gas exchange measurements for comparison. Accuracy assessment revealed no significant difference between SCG and GET ˙VO2max (mean±95% CI; 38.3±1.6 and 39.3±1.6 ml·min-1·kg-1, respectively. P=0.075). Further, a Pearson correlation of r=0.73, a standard error of estimate (SEE) of 5.9 ml·min-1·kg-1, and a coefficient of variation (CV) of 8±1% were found. The SCG ˙VO2max showed higher accuracy, than the non-exercise model based on the FRIENDS study, when this was applied to the present population (bias=-3.7±1.3 ml·min-1·kg-1, p<0.0001. r=0.70. SEE=7.4 ml·min-1·kg-1, and CV=12±2%). The SCG ˙VO2max prediction model is an accurate method for the determination of ˙VO2max in a healthy adult population. However, further investigation on the validity and reliability of the SCG ˙VO2max prediction model in different populations is needed for consideration of clinical applicability.


Assuntos
Consumo de Oxigênio , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Testes de Função Cardíaca , Teste de Esforço
3.
JMIR Aging ; 5(2): e35696, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536617

RESUMO

BACKGROUND: Individual differences in the rate of aging and susceptibility to disease are not accounted for by chronological age alone. These individual differences are better explained by biological age, which may be estimated by biomarker prediction models. In the light of the aging demographics of the global population and the increase in lifestyle-related morbidities, it is interesting to invent a new biological age model to be used for health promotion. OBJECTIVE: This study aims to develop a model that estimates biological age based on physiological biomarkers of healthy aging. METHODS: Carefully selected physiological variables from a healthy study population of 100 women and men were used as biomarkers to establish an estimate of biological age. Principal component analysis was applied to the biomarkers and the first principal component was used to define the algorithm estimating biological age. RESULTS: The first principal component accounted for 31% in women and 25% in men of the total variance in the biological age model combining mean arterial pressure, glycated hemoglobin, waist circumference, forced expiratory volume in 1 second, maximal oxygen consumption, adiponectin, high-density lipoprotein, total cholesterol, and soluble urokinase-type plasminogen activator receptor. The correlation between the corrected biological age and chronological age was r=0.86 (P<.001) and r=0.81 (P<.001) for women and men, respectively, and the agreement was high and unbiased. No difference was found between mean chronological age and mean biological age, and the slope of the regression line was near 1 for both sexes. CONCLUSIONS: Estimating biological age from these 9 biomarkers of aging can be used to assess general health compared with the healthy aging trajectory. This may be useful to evaluate health interventions and as an aid to enhance awareness of individual health risks and behavior when deviating from this trajectory. TRIAL REGISTRATION: ClinicalTrials.gov NCT03680768; https://clinicaltrials.gov/ct2/show/NCT03680768. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/19209.

4.
JMIR Res Protoc ; 9(10): e19209, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33104001

RESUMO

BACKGROUND: Actions to improve healthy aging and delay morbidity are crucial, given the global aging population. We believe that biological age estimation can help promote the health of the general population. Biological age reflects the heterogeneity in functional status and vulnerability to disease that chronological age cannot. Thus, biological age assessment is a tool that provides an intuitively meaningful outcome for the general population, and as such, facilitates our understanding of the extent to which lifestyle can increase health span. OBJECTIVE: This interdisciplinary study intends to develop a biological age model and explore its usefulness. METHODS: The model development comprised three consecutive phases: (1) conducting a cross-sectional study to gather candidate biomarkers from 100 individuals representing normal healthy aging people (the derivation cohort); (2) estimating the biological age using principal component analysis; and (3) testing the clinical use of the model in a validation cohort of overweight adults attending a lifestyle intervention course. RESULTS: We completed the data collection and analysis of the cross-sectional study, and the initial results of the principal component analysis are ready. Interpretation and refinement of the model is ongoing. Recruitment to the validation cohort is forthcoming. We expect the results to be published by December 2021. CONCLUSIONS: We expect the biological age model to be a useful indicator of disease risk and metabolic risk, and further research should focus on validating the model on a larger scale. TRIAL REGISTRATION: ClinicalTrials.gov NCT03680768, https://clinicaltrials.gov/ct2/show/NCT03680768 (Phase 1 study); NCT04279366 https://clinicaltrials.gov/ct2/show/NCT04279366 (Phase 3 study). INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/19209.

5.
J Appl Physiol (1985) ; 125(5): 1536-1554, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091666

RESUMO

Our purpose here was to investigate the potential of blocking the angiotensin II type I receptor (AT1R) on the hypertrophy response of elderly human skeletal muscle to 4 mo of heavy-resistance exercise training. Fifty-eight healthy elderly men (+65 yr) were randomized into three groups, consuming either AT1R blocker (losartan, 100 mg/day) or placebo for 4 mo. Two groups performed resistance training (RT) and were treated with either losartan or placebo, and one group did not train but was treated with losartan. Quadriceps muscle biopsies, MR scans, and strength tests were performed at baseline and after 8 and 16 wk. Biopsies were sectioned for immunohistochemistry to determine the number of satellite cells, capillaries, fiber type distribution, and fiber area. Gene expression levels of myostatin, connective tissue, and myogenic signaling pathways were determined by real-time RT-PCR. Four months of heavy-resistance training led in both training groups to expected improvements in quadriceps (∼3-4%) and vastus lateralis (∼5-6%), cross-sectional area, and type II fiber area (∼10-18%), as well as dynamic (∼13%) and isometric (∼19%) quadriceps peak force, but with absolutely no effect of losartan on these outcomes. Furthermore, no changes were seen in satellite cell number with training, and most gene targets failed to show any changes induced by training or losartan treatment. We conclude that there does not appear to be any effect of AT1R blocking in elderly men during 4 mo of resistance training. Therefore, we do not find any support for using AT1R blockers for promoting muscle adaptation to training in humans. NEW & NOTEWORTHY Animal studies have suggested that blocking angiotensin II type I receptor (AT1R) enhances muscle regeneration and prevents disuse atrophy, but studies in humans are limited. Focusing on hypertrophy, satellite cells, and gene expression, we found that AT1R blocking did not result in any greater responses with 4 mo of resistance training. These results do not support previous findings and question the value of blocking AT1R in the context of preserving aging human muscle.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Losartan/farmacologia , Músculo Esquelético/efeitos dos fármacos , Treinamento de Força , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Pressão Sanguínea/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Masculino , Força Muscular , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Miostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...